233 research outputs found

    Counterion-Mediated Attraction and Kinks on Loops of Semiflexible Polyelectrolyte Bundles

    Get PDF
    The formation of kinks in a loop of bundled polyelectrolyte filaments is analyzed in terms of the thermal fluctuations of charge density due to polyvalent counterions adsorbed on the polyelectrolyte filaments. It is found that the counterion-mediated attraction energy of filaments depends on their bending. By consideration of curvature elasticity energy and counterion-mediated attraction between polyelectrolyte filaments, the characteristic width of the kink and the number of kinks per loop is found to be in reasonable agreement with existing experimental data for rings of bundled actin filaments

    The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity

    Get PDF
    The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus

    Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae

    Get PDF
    Acknowledgements We thank Marco Thiel for assistance with data interpretation, Peter Sudbery for the provision of strains and Jeremy Craven for useful discussions. This work was supported by a BBSRC-DTG to D. D. T., NIH award DK083592 to F. J. B. and P. A. J., and a Royal Society URF UF080611 and MRC NIRG 90671 to A. C. B.Non peer reviewedPublisher PD

    Nonlinear Elasticity in Biological Gels

    Full text link
    Unlike most synthetic materials, biological materials often stiffen as they are deformed. This nonlinear elastic response, critical for the physiological function of some tissues, has been documented since at least the 19th century, but the molecular structure and the design principles responsible for it are unknown. Current models for this response require geometrically complex ordered structures unique to each material. In this Article we show that a much simpler molecular theory accounts for strain stiffening in a wide range of molecularly distinct biopolymer gels formed from purified cytoskeletal and extracellular proteins. This theory shows that systems of semi-flexible chains such as filamentous proteins arranged in an open crosslinked meshwork invariably stiffen at low strains without the need for a specific architecture or multiple elements with different intrinsic stiffnesses.Comment: 23 pages, 5 figures, submitted to Natur

    Recombinant human plasma gelsolin reverses increased permeability of the blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus.

    Get PDF
    BACKGROUND: Plasma gelsolin (pGSN) is an important part of the blood actin buffer that prevents negative consequences of possible F-actin deposition in the microcirculation and has various functions during host immune response. Recent reports reveal that severe COVID-19 correlates with reduced levels of pGSN. Therefore, using an in vitro system, we investigated whether pGSN could attenuate increased permeability of the blood-brain barrier (BBB) during its exposure to the portion of the SARS-CoV-2 spike protein containing the receptor binding domain (S1 subunit). MATERIALS AND METHODS: Two- and three-dimensional models of the human BBB were constructed using the human cerebral microvascular endothelial cell line hCMEC/D3 and exposed to physiologically relevant shear stress to mimic perfusion in the central nervous system (CNS). Trans-endothelial electrical resistance (TEER) as well as immunostaining and Western blotting of tight junction (TJ) proteins assessed barrier integrity in the presence of the SARS-CoV-2 spike protein and pGSN. The IncuCyte Live Imaging system evaluated the motility of the endothelial cells. Magnetic bead-based ELISA was used to determine cytokine secretion. Additionally, quantitative real-time PCR (qRT-PCR) revealed gene expression of proteins from signaling pathways that are associated with the immune response. RESULTS: pGSN reversed S1-induced BBB permeability in both 2D and 3D BBB models in the presence of shear stress. BBB models exposed to pGSN also exhibited attenuated pro-inflammatory signaling pathways (PI3K, AKT, MAPK, NF-κB), reduced cytokine secretion (IL-6, IL-8, TNF-α), and increased expression of proteins that form intercellular TJ (ZO-1, occludin, claudin-5). CONCLUSION: Due to its anti-inflammatory and protective effects on the brain endothelium, pGSN has the potential to be an alternative therapeutic target for patients with severe SARS-CoV-2 infection, especially those suffering neurological complications of COVID-19

    Materials science and mechanosensitivity of living matter

    Get PDF
    Living systems are composed of molecules that are synthesized by cells that use energy sources within their surroundings to create fascinating materials that have mechanical properties optimized for their biological function. Their functionality is a ubiquitous aspect of our lives. We use wood to construct furniture, bacterial colonies to modify the texture of dairy products and other foods, intestines as violin strings, bladders in bagpipes, and so on. The mechanical properties of these biological materials differ from those of other simpler synthetic elastomers, glasses, and crystals. Reproducing their mechanical properties synthetically or from first principles is still often unattainable. The challenge is that biomaterials often exist far from equilibrium, either in a kinetically arrested state or in an energy consuming active state that is not yet possible to reproduce de novo. Also, the design principles that form biological materials often result in nonlinear responses of stress to strain, or force to displacement, and theoretical models to explain these nonlinear effects are in relatively early stages of development compared to the predictive models for rubberlike elastomers or metals. In this Review, we summarize some of the most common and striking mechanical features of biological materials and make comparisons among animal, plant, fungal, and bacterial systems. We also summarize some of the mechanisms by which living systems develop forces that shape biological matter and examine newly discovered mechanisms by which cells sense and respond to the forces they generate themselves, which are resisted by their environment, or that are exerted upon them by their environment. Within this framework, we discuss examples of how physical methods are being applied to cell biology and bioengineering

    Mechanisms of Mitochondria–Neurofilament Interactions

    Get PDF
    Mitochondria are localized to regions of the cell where ATP consumption is high and are dispersed according to changes in local energy needs. In addition to motion directed by molecular motors, mitochondrial distribution in neuronal cells appears to depend on the docking of mitochondria to microtubules and neurofilaments. We examined interactions between mitochondria and neurofilaments using fluorescence microscopy, dynamic light scattering, atomic force microscopy, and sedimentation assays. Mitochondria-neurofilament interactions depend on mitochondrial membrane potential, as revealed by staining with a membrane potential sensitive dye (JC-1) in the presence of substrates/ADP or uncouplers (valinomycin/carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) and are affected by the phosphorylation status of neurofilaments and neurofilament sidearms. Antibodies against the neurofilament heavy subunit disrupt binding between mitochondria and neurofilaments, and isolated neurofilament sidearms alone interact with mitochondria, suggesting that they mediate the interactions between the two structures. These data suggest that specific and regulated mitochondrial-neurofilament interactions occur in situ and may contribute to the dynamic distribution of these organelles within the cytoplasm of neurons

    Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice

    Get PDF
    BACKGROUND: The worldwide appearance of drug-resistant strains of H. pylori motivates a search for new agents with therapeutic potential against this family of bacteria that colonizes the stomach, and is associated with adenocarcinoma development. This study was designed to assess in vitro the anti-H. pylori potential of cathelicidin LL-37 peptide, which is naturally present in gastric juice, its optimized synthetic analog WLBU2, and the non-peptide antibacterial agent ceragenin CSA-13. RESULTS: In agreement with previous studies, increased expression of hCAP-18/LL-37 was observed in gastric mucosa obtained from H. pylori infected subjects. MBC (minimum bactericidal concentration) values determined in nutrient-containing media range from 100-800 μg/ml for LL-37, 17.8-142 μg/ml for WLBU2 and 0.275-8.9 μg/ml for ceragenin CSA-13. These data indicate substantial, but widely differing antibacterial activities against clinical isolates of H. pylori. After incubation in simulated gastric juice (low pH with presence of pepsin) CSA-13, but not LL-37 or WLBU2, retained antibacterial activity. Compared to LL-37 and WLBU2 peptides, CSA-13 activity was also more resistant to inhibition by isolated host gastric mucins. CONCLUSION: These data indicate that cholic acid-based antimicrobial agents such as CSA-13 resist proteolytic degradation and inhibition by mucin and have potential for treatment of H. pylori infections, including those caused by the clarithromycin and/or metronidazole-resistant strains
    corecore